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WHITE PAPER SERIES 

Introduction 

At Lipotype our expertise are lipids, lipid metabolism, lipid chemistry and lipidomics. There-
fore, statistical analysis is always done with this knowledge as a basis. We treat lipids not as 
isolated entities but as a metabolic network with substructure and with their functions in 
mind. At Lipotype we are using the R programming language1 for statistical computing 
with its rich environment of methods and plotting capabilities. 

When working with lipidomic datasets consisting of hundreds of parameters (the lipids) in 
thousands of samples, a major challenge is to extract the relevant information. In the con-
text of a biomarker identification study in which a cohort of healthy subjects is compared 
with a cohort of diseased subjects, the relevant information would be the lipids that dis-
criminate health from disease. This information could then potentially be of use for disease 
stratification or diagnosis. In this white paper, we will guide you through the data analysis 
process aiming at the identification of biomarkers and the evaluation of their perfor-
mance. The example is based on the analysis of 140 simulated human plasma lipidomes 
as acquired by Lipotype’s mass spectrometry-based Shotgun Lipidomics technology. 

                                                        

1 R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https://www.R-project.org/ 

White Paper: Big Data Lipidomics 

Lipidomics is the large-scale study of lipids in biological systems. The analysis of large 
datasets, potentially containing up to thousands of lipidomes, is a challenging en-
deavour. We have established multiparametric statistical approaches, tailored to 
quantify lipid data. These methods are geared to identify lipid biomarkers. In this 
white paper a cohort of healthy subjects is compared with a cohort of diseased per-
sons to identify lipid signatures that discriminate health from disease. Such signatures 
could potentially be useful for disease stratification or for diagnosis by means of pre-
dictive modelling (machine learning). In this white paper, we will guide you through 
the data analysis process aiming at the identification of lipid biomarkers and the 
evaluations of their performance. 
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Data preparation 

Lipid amounts are generally provided in moles (pmol), but often we prefer to standardize 
to the total amount of lipids within a sample, which we call mol percentage (molp). This 
usually increases the robustness of the subsequent analysis. 

When screening large high-throughput 
datasets, which are acquired in the course 
of several days or even weeks, we typically 
include reference samples in order to be 
able to assess analytical performance. 
Based on these reference samples, da-
tasets are tested for measurement artifacts 
like drift and batch effects, and corrected 
if required. 

Additionally, we apply occupational 
thresholds, to only work with lipids that are 
present in a sufficiently large fraction, e.g. 
70% of the study samples (Figure 1). Occu-
pational thresholds may also be applied based on study groups. 

We join all provided clinical and anthropometric data with the lipidomic dataset and 
check for overall consistency. To that end further measures can be applied, such as outlier 
filtering. Additionally, propensity matching can be performed in order to make sure that 
study cohorts are matching based on clinical and anthropometric parameters. 

Data Analysis 

Initially, we try to achieve a bird's-eye view of the dataset using dimensionality reduction 
and clustering. 

With PCA (principal component analysis) we investigate the major variation within the 
sample set and look for segregation of cohorts (or experimental groups in general) within 
the principal components. If a segregation is found for subjects in the scores plot (Figure 
2A), an analysis of the lipids or features in the PCA loadings (Figure 2B) can already be a 
rich source of information of the reasons for the segregation. In the present example, a 
segregation of the study cohorts in dimension 2 (PC2) can be observed, indicating poten-
tial differences in the lipid composition of the two cohorts. Note, however, that dimension 
1 (PC1), which is the dimension with the largest variability in the dataset, does not allow for 
a separation of the two cohorts. This indicates that there is substantial variation in the da-
taset that is independent of the cohort assignments, or, in other words, does not reflect 
differences between healthy and diseased subjects. This is a typical situation for human 
plasma lipidomic datasets, which comprise significant inter-individual variability. To be 
able to cope with this intrinsic characteristic of human plasma, a sufficient (typically >100, 
depending on the effect size) number of samples needs to be provided in order to obtain 
satisfying statistical power. 

 

 

Figure 1: Occupational Threshold: Only lipids, which are 
present in a minimal fraction (here 70% of samples) are 
used for further analysis. In the present example, a total of 
230 lipids pass the threshold. 
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To identify the lipids that differ between cohorts (healthy vs diseased) we apply statistical 
hypothesis tests: the parametric t-test and its non-parametric alternative Wilcoxon rank-
sum test, in their paired and unpaired variants. Covariates (such as age, gender or drug 
use) can be incorporated on the basis of linear models. p-values are adjusted for multiple 
comparisons. A volcano plot shown in Figure 3A readily visualizes the result. Lipids that are 
significantly different are highlighted (the “hits”). The fold-change (x axis) provides an idea 
about the effect size. Box plots (Figure 3B) help visualizing the distribution of the individual 
data points of the cohorts. 

A B 
  

Figure 3: (A) Volcano plot of lipid (sub-)species differences between two cohorts. Significant differences according to Wilcoxon rank-sum 
test and p-value adjustment (Bonferroni) are marked with their (sub-)species name. (B) Box plot of selected features from the Volcano plot. 

 

 

 

A B 
 

 
Figure 2: PCA Analysis of a dataset. In the scores plot (A) a segregation of the samples can be observed in principle com-
ponent 2.  In the loading plot (B) individual lipid (sub-)species are show as the basis of the segregation. 
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Enrichment Analysis / Pathway Analysis 

Outputs of statistical analysis, as described above, are usually lists of individual lipid spe-
cies. Enrichment analysis based on hypergeometric distribution or ranks, can provide help 
with interpretation of these lists by suggesting more general categories enriched within the 
results. Categories range from lipid classes, fatty acid composition, saturation profiles to 
pathway analysis and incorporate the full lipid knowledge of Lipotype. In the present ex-
ample, we observe an enrichment of lysophosphatidylcholines (LPC) and lysophosphati-
dylethanolamines (LPE) among the hits (Figure 4), suggesting alterations in the activities of 
the respective phospholipid hydrolase as a cause for the observed differences. 

 
Figure 4: Enrichment analysis of lipid classes over the data sorted according to the volcano 
plot above (Figure 3A). This is an example of a generalization from individual features to 
features that have more explanatory value.  

 

Predictive Modelling 

With Predictive modelling we use a supervised algorithm to predict class membership of 
future samples. In the present example, the goal is to predict if a subject is healthy or dis-
eased based on the plasma lipidome. It can also be applied to estimate the performance 
of a lipid signature to distinguish between study cohorts. For training a classification algo-
rithm, we use 5× 10-fold cross validation on 80% of the data, while the remaining 20% are 
used as a hold-out test set. Data were centered, scaled and transformed to normal distri-
bution. Missing values were median-imputed. All data pre-processing steps are performed 
within the cross-validation loop. 

 

Classification 

We trained several models (see Figure 5), of which the partial least squares discriminant 
analysis (pls) shows a good performance with an average cross validation classification 
accuracy of 95%. Cross validation sensitivity and specificity on the test set are 97% and 
94%, respectively. Thus, 97% of the patients can be correctly identified as diseased based 
on the identified lipidomic signature. The most important predictors used for classification 
are shown in Figure 5B. 
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A B 

  
Figure 5: Example of Classification outputs: (A) Overall performance of different models are compared. (B) Lipid 
(sub-)species of the partial least squares discriminant analysis (pls) are ranked according to their importance for the predic-
tion.  
 

Continuous outcome variables 

The examples above were dealing with categorical data, i.e. healthy vs. diseased. How-
ever, one might also want to relate lipidomics data to continuous variables such as BMI or 
blood glucose level. In that case, a correlation analysis or regression models would be 
appropriate methods. 

Correlation analysis 

Correlation analysis (Figure 6) is used to study the strength of the relationship between the 
amounts of individual lipids and a continuous clinical or anthropometric variable (e.g. 
blood glucose level). Significance estimates and covariates can be incorporated on the 
basis of linear models. In the present example, we could observe strong correlations be-
tween the amounts of individual lipids and blood glucose levels (Figure 6). This result sug-
gests a complex interplay of glucose and lipid metabolism and might reveal novel thera-
peutic targets for the treatment of aberrant blood glucose levels or related metabolic dis-
orders. 

 
Figure 6: Correlations of a continuous feature to individual lipid (sub-)species. 
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Predictive Modelling 

Instead of analyzing the correlation of individual lipid molecules with a continuous out-
come variable, one can alternatively relate the entire lipidome with the outcome varia-
ble. In what is called a regression analysis, we typically train several models on root-mean-
square error (RMSE) or coefficient of determination (𝑅!). Models include: Linear models, 
Partial Least Squares Regression (PLS-R), Lasso and Cubist. 

 

What is delivered: EMPOWERING YOUR DATA ANALYSIS 

Venturing into the analysis of large scale dataset is a challenging endeavor. Therefore, 
experts from Lipotype will interact with you closely starting from the first contact in order to 
understand your questions, needs and expectations. Based on the initial discussions, we 
will propose an analysis scheme that aims at getting the most out of your data. Upon 
agreement on an analysis goal, we will provide results in time-efficient and comprehendi-
ble manner. The customer will receive a report containing a summary the results and de-
tailed descriptions of the statistical methods. Visualization of data is key to understanding 
results. Lipotype provides figures that can be used in presentations and data, which can 
be used in publications or reports. We will offer additional consultation after delivery of the 
report to make sure our customers get the most out of the results. 

 

Applications for big data lipidomics 

• Lipid biomarker identification and validation (pharmacodynamic, pharmacokinet-
ic, CDx) for biotech and pharma industry as well as (pre-)clinical research 

• Lipid biomarker identification and validation for clinical diagnostics (prognostic, di-
agnostic, patient stratification) 

• Identification of novel, lipid-related therapeutic targets and mode-of-action studies 
in drug discovery phases 

• Analysis of animal studies 

• Analysis of clinical datasets in general 

• Intervention studies for development of functional food/nutraceuticals  

• Cosmetic claim support for (active) ingredients for cosmetic industry 

• For cohort studies with limited sample size, we recommend LipotypeZoom as a 
quick and cost effective tool to interactively analyse your data.  
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Disclaimer: All data and results shown here are only for illustrative purposes. All data sets 
have been simulated and do not represent real values measured on actual samples. 

 

Contact:  

Dr. Oliver Uecke  Lipotype GmbH  

T: +49 (0) 351 79653-45 Tatzberg 47, 01307 Dresden, Germany 

sales@lipotype.com www.lipotype.com 


